Perbandingan Aktivitas Antioksidan dan Kandungan Fenolik Temulawak dan Temu Ireng
Abstract
Penelitian ini bertujuan untuk membandingkan aktivitas antioksidan dan kandungan fenolik dari rimpang temulawak dan temu ireng. Aktivitas antioksidan ditentukan dengan menggunakan metode DPPH (1, 1-diphenyl-2-picrylhydrazyl). Kandungan fenolik total ditentukan dengan menggunakan metode Folin-Ciocalteu. Ekstrak etanol 70% dari rimpang temulawak memiliki aktivitas antiosidan (IC50, 167.03 µg/ ml) yang lebih baik dibandingkan dengan ekstrak etanol 70% rimpang temu ireng aeruginosa (IC50, 406.52 µg/ ml). Kandungan fenolik total dari ekstrak etanol 70% rimpang temulawak (139.16 mg TAE/ g) lebih tinggi dibandingkan dengan ekstrak etanol 70% rimpang temu ireng (51.49 mg TAE/ g). Terdapat korelasi yang kuat antara aktivitas antioksidan dan kandungan fenolik total dari ekstrak temulawak dan temu ireng.
Full text article
References
Akowuah GA, Ismail Z, Norhayati I, Sadikun A. 2005. The effects of different extraction solvents of varying polarities of polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem. 93(2): 311-317.
Banerjee A, Nigam SS. 1976. Antifungal activities of the essential oil of Curcuma caesia Roxb. Indian Journal of Medical Research. 64(9): 1318-1321.
Bos R, Windono T, Woerdenbag HJ, Boersma YL, Koulman A, Kayser O. 2007. HPLC-photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia. Phytochemical Analysis. 18: 118-122.
Cai Y, Luo Q, Sun M, Corke H. 2004. Antioxidant activity and phenolic compounds of 112 Chinese medicinal plants associated with anticancer. Life Sciences. 74: 2157–2184.
Choi M, Kim S, Chung W, Hwang J, Park K. 2004. Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza has an anti-metastatic potential in experimental mouse lung metastasis model. Biochemical and Biophysical Research Communications. 326: 210-217.
Devaraj S, Esfahani AS, Ismail S, Ramanathan S, Yam MF. 2010. Evaluation of the antinociceptive activity and acute oral toxicity of standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza Roxb. Molecules. 15(4): 2925-2934.
Huang MT, Lou Y, Xie J, Ma W, Lu Y, Yen P, Zhu B, Newmark H, Ho C. 1998. Effect of dietary curcumin and dibenzoylmethane on formation of 7, 12-dimethylbenz [a] anthracene-induced mammary tumors and lymphomas/leukemia’s in Sencar mice. Carcinogenesis. 19(9): 1697-1700.
Hwang J, Shim J, Pyun Y. 2000. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia 71(3): 321-323.
Jantan I, Rafi IAA, Jalil J. 2005. Plateletactivating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants. Phytomedicine 12(1-2): 88-92.
Kim MB, Kim C, Song Y, Hwang JK. 2014. Antihyperglycemic and anti-inflammatory effects of standardized Curcuma xanthorrhiza Roxb. extract and active compound xanthorrhizol in high-fat diet-induced obese mice. Evidence-Based Complementary and Alternative Medicine. Article ID 205915: 1-10.
Lechtenberg M, Quandt B, Nahrstedt A. 2004. Quantitative determination of curcuminoids in Curcuma rhizomes and rapid differentiation of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb, by capillary electrophoresis. Phytochemical Analysis. 15(3): 152-158.
Masuda T, Isoke J, Jitoe A, Nakatani N. 1992. Antioxidative curcuminoids from rhizomes of Curcuma xanthorrhiza. Phytochemistry. 31(10): 3645-3647.
Nurcholis W, Priosoeryanto BP, Purwakusumah ED, Katayama T, Suzuki T. 2012. Antioxidant, cytotoxic activities and total phenolic content of four Indonesian medicinal plants. Valensi. 2 (4): 501-510.
Otake T, Mori H, Morimoto M, Ueba N, Sutardjo S, Kusumoto IT, Hattori M, Namba T. 1995. Screening of Indonesian plant extracts for antihuman immunodeficiency virus-type 1 (HIV-1) activity. Phytotherapy Research. 9(1): 6-10.
Reanmongkol W, Subhadhirasakul S, Khaisombat N, Fuengnawakit P, Jantasila N, Khamjun A. 2006. Investigation the antinociceptive, antipyretic and anti-inflammatory activities of Curcuma aeruginosa Roxb. extracts in experimental animals. Songklanakarin J Sci Technol. 28(5): 999-1008.
Rukayadi Y, Yong D, Hwang JK. 2006. In vitro anticandidal activity of xanthorrhizol isolated from Curcuma xanthorrhiza RoxB. Journal of Antimicrobial Chemotherapy. 57(6): 1231-1234.
Shan B, Cai YZ, Sun M, Corke H. 2005. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry. 53(20): 7749–7759.
Suksamrarn A, Eiamong S, Piyachaturawat P, Charoenpiboonsin J. 1994. Phenolic diarylheptanoids from Curcuma xanthorrhiza. Phytochemistry. 36(6): 1505-1508.
Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. 2007. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry. 102(3): 764-770.
Wong C, Li H, Cheng K, Chen F. 2006. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry. 97(4): 705-711.
Yasni S, Imaizumi KT, Nakamura M, Aimoto J, Sugano M. 1993. Effects of Curcuma xanthorrhiza Roxb. and curcuminoids on the level of serum and liver lipids, serum apolipoprotein A-I and lipogenic enzymes in rats. Food and Chemical Toxicology. 31(3): 213-218.
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Copyright @2017. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium