Optimization of Cardamom Fruit (Amomum compactum) Extraction Focused on Total Terpenoid Extraction and Cytotoxic Activity Using Response Surface Methodology

Dara Juliana (1), Bambang Pontjo Priosoeryanto (2), Waras Nurcholis (3)
(1) Department of Medical Education, Faculty of Medical, Veteran National Development University, Jakarta, Indonesia, Indonesia,
(2) Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia, Indonesia,
(3) Department of Medical Education, Faculty of Medical, Veteran National Development University, Jakarta, Indonesia; Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia, Indonesia

Abstract

Cardamom is one of the medicinal plants called perennial herbs from the Zingiberaceae family. Cardamom, with the scientific name Amomum compactum, contains various phytochemical compounds such as terpenoids, flavonoids, phenolics, tannins, sterols, and proteins that are pharmacologically useful as an anticancer, antioxidant, and have cytotoxic activity. Testing the total content of terpenoid compounds that affect the cytotoxic activity of A. compactum fruit using Box-Behnken Design with three independent variables (solvent ratio, ethanol concentration, and extraction time) has never been studied before. Thus, this study aimed to obtain the extraction optimization conditions on the total terpenoid content and cytotoxic activity using Artemia salina Leach larvae with the response surface method, namely Box-Behnken Design with Design Expert 13.0 application. Determination of the total terpenoid content of the A. compactum fruit extract was carried out based on the standard ursalic acid, and the cytotoxic activity was carried out using the Brine Shrimp Lethality Test (BSLT) method. The maximum total terpenoid obtained was 4.8970 mg UAE/g DW, and the minimum IC50 value was 38.8813 ppm. Optimal conditions for the extraction of A. compactum fruit obtained a combination of 1:8 mL/g solvent ratio, 50% ethanol concentration, and extraction time of 1 day with a desirability value of 0.772. Furthermore, the optimal extraction solution results from the Box-Behnken Design were verified and analyzed using a One-Sample T-Test. Using the Box-Behnken Design extraction optimization method, the content of terpenoid bioactive compounds with cytotoxic activity from A. compactum fruit can be optimally obtained.

Full text article

Generated from XML file

References

Abarca-Vargas, R., Peña Malacara, C. F., & Petricevich, V. L. (2016). Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts. Antioxidants (Basel, Switzerland), 5(4). https://doi.org/10.3390/ANTIOX5040045

Ahmad, A., Rehman, M. U., Wali, A. F., El-Serehy, H. A., Al-Misned, F. A., Maodaa, S. N., Aljawdah, H. M., Mir, T. M., & Ahmad, P. (2020). Box-Behnken Response Surface Design of Polysaccharide Extraction from Rhododendron arboreum and the Evaluation of Its Antioxidant Potential. Molecules (Basel, Switzerland), 25(17). https://doi.org/10.3390/MOLECULES25173835

Al-Zereini, W. A., Al-Trawneh, I. N., Al-Qudah, M. A., TumAllah, H. M., Al Rawashdeh, H. A., & Abudayeh, Z. H. (2022). Essential oils from Elettaria cardamomum (L.) Maton grains and Cinnamomum verum J. Presl barks: Chemical examination and bioactivity studies. Journal of Pharmacy and Pharmacognosy Research, 10(1), 173–185. https://doi.org/10.56499/JPPRES21.1162_10.1.173

Alam, A., jawaid, T., & Alam, P. (2021). In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. Journal of Taibah University for Science, 15(1), 757–768. https://doi.org/10.1080/16583655.2021.2002550

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 6(4). https://doi.org/10.3390/PLANTS6040042

Ashokkumar, K., Vellaikumar, S., Murugan, M., Dhanya, M. K., Ariharasutharsan, G., Aiswarya, S., Akilan, M., Warkentin, T. D., & Karthikeyan, A. (2021). Essential Oil Profile Diversity in Cardamom Accessions From Southern India. Frontiers in Sustainable Food Systems, 5, 639619. https://doi.org/10.3389/FSUFS.2021.639619/BIBTEX

Aziz, A. R. A., & Aziz, S. A. (2018). Application of Box Behnken Design to Optimize the Parameters for Kenaf-Epoxy as Noise Absorber. IOP Conference Series: Materials Science and Engineering, 454(1), 012001. https://doi.org/10.1088/1757-899X/454/1/012001

Biswas, B., Golder, M., Abid, M. A., Mazumder, K., & Sadhu, S. K. (2021). Terpenoids enriched ethanol extracts of aerial roots of Ceriops decandra (Griff.) and Ceriops tagal (Perr.) promote diuresis in mice. Heliyon, 7(7). https://doi.org/10.1016/J.HELIYON.2021.E07580

Campos-Xolalpa, N., Pérez-Gutiérrez, S., Pérez-González, C., Mendoza-Pérez, J., & Alonso-Castro, A. J. (2018). Terpenes of the genus salvia: Cytotoxicity and antitumoral effects. Anticancer Plants: Natural Products and Biotechnological Implements, 2, 163–205. https://doi.org/10.1007/978-981-10-8064-7_8/COVER

Che Sulaiman, I. S., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1–11. https://doi.org/10.1186/s13065-017-0285-1

Elguindy, N. M., Yacout, G. A., El Azab, E. F., & Maghraby, H. K. (2016). Chemoprotective Effect of Elettaria Cardamomum against Chemically induced Hepatocellular Carcinoma in Rats by Inhibiting NF-κB, Oxidative Stress, and Activity of Ornithine Decarboxylase. South African Journal of Botany, 105, 251–258. https://doi.org/10.1016/J.SAJB.2016.04.001

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31(4), 337. https://doi.org/10.1007/S10654-016-0149-3

Hikmawanti, N. P. E., Fatmawati, S., & Asri, A. W. (2021). The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. IOP Conference Series: Earth and Environmental Science, 755(1), 012060. https://doi.org/10.1088/1755-1315/755/1/012060

Ismail, N. I. M., & Chua, L. S. (2020). Solvent Partition for Terpenoid Rich Fraction From Crude Extract of Eurycoma longifolia. 62–67. https://doi.org/10.2991/AER.K.201229.009

Ivanović, M., Makoter, K., & Razboršek, M. I. (2021). Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants (Basel, Switzerland), 10(3), 1–20. https://doi.org/10.3390/PLANTS10030501

Jena, S., Ray, A., Sahoo, A., Champati, B. B., Padhiari, B. M., Dash, B., Nayak, S., & Panda, P. C. (2021). Chemical Composition and Antioxidant Activities of Essential oil from Leaf and Stem of Elettaria cardamomum from Eastern India. Journal of Essential Oil Bearing Plants, 24(3), 538–546. https://doi.org/10.1080/0972060X.2021.1937335

Kamanja, I., & John, K. D. (2018). Cytotoxicity of selected medicinal plants extracts using the brine shrimp lethality assay from Samburu county, Kenya. The Journal of Medical Research, 4(5), 249–255. www.medicinearticle.com

Khoiriyah, R., I, M. A., & Nurcholis, W. (2020). Box-Behnken experimental design for extraction optimization of cytotoxic activity from Curcuma aeruginosa rhizome. International Journal of Research in Pharmaceutical Sciences, 11(2), 1631–1637. https://doi.org/10.26452/ijrps.v11i2.2045

Lima, R. S., Perez, C. N., da Silva, C. C., Santana, M. J., Queiroz Júnior, L. H. K., Barreto, S., de Moraes, M. O., & Martins, F. T. (2019). Structure and cytotoxic activity of terpenoid-like chalcones. Arabian Journal of Chemistry, 12(8), 3890–3901. https://doi.org/10.1016/J.ARABJC.2016.02.013

Lin, D., Ma, Q., Zhang, Y., & Peng, Z. (2020). Phenolic compounds with antioxidant activity from strawberry leaves: a study on microwave-assisted extraction optimization. Preparative Biochemistry & Biotechnology, 50(9), 874–882. https://doi.org/10.1080/10826068.2020.1762213

Mahmud, I., Mirghani, M. E. S., Yusof, F., & Al-khatib, M. (2019). Effects of Time, Temperature, and Solvent Ratio on the Extraction of Non-Extractable Polyphenols with Anticancer Activity of Barhi Date Palm Kernels Extracts Using Response Surface Methodology. https://doi.org/10.20944/PREPRINTS201907.0055.V1

Mang, D. Y., Abdou, A. B., Njintang, N. Y., Djiogue, E. J. M., Loura, B. B., & Mbofung, M. C. (2015). Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk. Journal of Food Measurement and Characterization, 9(4), 495–507. https://doi.org/10.1007/S11694-015-9258-Z/METRICS

Mercurio, D. G., Calixto, L. S., & Campos, P. M. B. G. M. (2020). Optimization of cosmetic formulations development using box–behnken design with response surface methodology: Physical, sensory and moisturizing properties. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/S2175-97902020000318502

Moulai-Hacene, F., Boufadi, M. Y., Keddari, S., & Homrani, A. (2020). Chemical Composition and Antimicrobial Properties of Elettaria cardamomum Extract. Pharmacognosy Journal, 12(5), 1058–1063. https://doi.org/10.5530/pj.2020.12.149

Qomaliyah, E. N., Artika, I. M., & Nurcholis, W. (2019). Optimization of the extraction process for extract yields, total flavonoid content, radical scavenging activity and cytotoxicity of Curcuma aeruginosa RoxB. rhizome. International Journal of Research in Pharmaceutical Sciences, 10(3), 1650–1659. https://doi.org/10.26452/ijrps.v10i3.1331

Rasul, M. G. (2018). Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages. International Journal of Basic Sciences and Applied Computing.

Roy, H., & Rahaman, S. A. (2018). Box-Behnken Design for Optimization of Formulation Variables for Fast Dissolving Tablet of Urapidil. Asian Journal of Pharmaceutics (AJP), 12(03), 946. https://doi.org/10.22377/AJP.V12I03.2632

Sajid, M., Woźniak, M. K., & Płotka-Wasylka, J. (2019). Ultrasound-assisted solvent extraction of porous membrane packed solid samples: A new approach for extraction of target analytes from solid samples. Microchemical Journal, 144, 117–123. https://doi.org/10.1016/J.MICROC.2018.08.059

Soós, Á., Bódi, É., Várallyay, S., Molnár, S., & Kovács, B. (2019). Mineral content of propolis tinctures in relation to the extraction time and the ethanol content of the extraction solvent. LWT, 111, 719–726. https://doi.org/10.1016/J.LWT.2019.05.090

Surowiak, A. K., Balcerzak, L., Lochyński, S., & Strub, D. J. (2021). Biological Activity of Selected Natural and Synthetic Terpenoid Lactones. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/IJMS22095036

Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of severinia buxifolia. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/8178294

Wang, X., Jiang, Y., & Hu, D. (2016). Optimization and in vitro antiproliferation of Curcuma wenyujin’s active extracts by ultrasonication and response surface methodology. Chemistry Central Journal, 10(1). https://doi.org/10.1186/S13065-016-0177-9

Authors

Dara Juliana
Bambang Pontjo Priosoeryanto
Waras Nurcholis
wnurcholis@apps.ipb.ac.id (Primary Contact)
Juliana, D. ., Priosoeryanto, B. P. ., & Nurcholis, W. . (2023). Optimization of Cardamom Fruit (Amomum compactum) Extraction Focused on Total Terpenoid Extraction and Cytotoxic Activity Using Response Surface Methodology. Jurnal Jamu Indonesia, 8(2), 57–69. https://doi.org/10.29244/jji.v8i2.328

Article Details

No Related Submission Found