In Silico Exploration of Orthosiphon stamineus Compounds as Potential Angiotensin Receptor Blockers for Hypertension Therapy

Andri Prasetiyo(1), Aqilah Idelia Indriani(2), Karina Natasya Ramadhani(3), Amitta Natthawani(4), Islami Al-Kaffah Ramadhan(5), Amira Thufailla Yogaswara(6), Cresentia Audrey(7), Esti Mulatsari(8), Esti Mumpuni(9), Nurulita Az Zahra(10)
(1) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(2) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(3) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(4) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(5) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(6) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(7) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(8) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(9) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia,
(10) Faculty of Pharmacy, Universitas Pancasila, Jagakarsa, South Jakarta, Jakarta, 12640, Indonesia

Abstract

Orthosiphon stamineus has demonstrated antihypertensive potential, but the specific bioactive compounds involved remain unclear. This study aimed to evaluate selected phytochemicals from O. stamineus as angiotensin receptor blockers (ARBs) targeting protein 4ZUD using in-silico methods. Molecular docking was conducted to assess binding affinity, while ADMET analysis evaluated pharmacokinetics and toxicity. Salvianolic acid E showed the strongest binding affinity with a rerank score of −134.02 kcal/mol, surpassing olmesartan (−124.52 kcal/mol). Key interactions were observed with amino acid residues Arg167, Tyr92, and Asp281. ADMET predictions revealed that Salvianolic acid E has good aqueous solubility, moderate intestinal absorption (HIA 45.99%), and low membrane permeability (Caco-2 < 0.4). It does not inhibit major cytochrome P450 isoenzymes and is predicted to be non-hepatotoxic, suggesting favorable safety and metabolic profiles. These findings highlight Salvianolic acid E as a promising phytochemical candidate for antihypertensive drug development.

Full text article

Generated from XML file

References

Agamah, E., Osei, D. N. A., & Sekyere, A. A. (2020). Pharmacoinformatics-based approach for potential HMG-CoA reductase inhibitors from African natural products as anti-hyperlipidemic agents. Heliyon, 6(2), e03486. https://doi.org/10.1016/j.heliyon.2020.e03486

Bagas, A. F., Soesanti, F., & Murwani, R. (2021). Perbandingan model machine learning dan deep learning untuk klasifikasi penyakit jantung. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(6), 1048–1056. https://doi.org/10.29207/resti.v5i6.3685

Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophysical Chemistry, 245, 25–32. https://doi.org/10.1016/j.bpc.2018.12.002

Chen, H. (2015). A novel ensemble learning approach for imbalanced data learning. Journal of Biomedical Informatics, 53, 303–313. https://doi.org/10.1016/j.jbi.2014.11.010

Konsensus Penatalaksanaan Hipertensi. (2019). Konsensus penatalaksanaan hipertensi 2019. Perhimpunan Dokter Hipertensi Indonesia.

Lestari, N. D., Wibowo, A. S., & Setiadi, R. (2023). Perbandingan metode klasifikasi machine learning untuk deteksi penyakit jantung. Jurnal Ilmu Komputer dan Informatika, 7(1), 40–46. https://doi.org/10.30865/jifo.v7i1.4661

PERKI. (2015). Pedoman tatalaksana hipertensi di Indonesia. Perhimpunan Dokter Spesialis Kardiovaskular Indonesia.

Prasetiyo, A. B., Anshory, A., & Suryani, D. (2019). Evaluasi performa algoritma klasifikasi untuk prediksi penyakit jantung. Jurnal Teknik Informatika, 12(1), 15–22. https://doi.org/10.20961/jti.v12i1.35654

Sulistyowaty, A., Wahyuningrum, T., & Maulida, A. (2023). Penerapan algoritma klasifikasi untuk mendeteksi risiko hipertensi pada pasien rawat jalan. Jurnal Sains dan Informatika, 9(2), 67–73. https://doi.org/10.32520/jsi.v9i2.2760

Thomsen, M., & Christensen, M. (2006). Bayesian networks in pharmacoepidemiology: A literature review. Pharmacoepidemiology and Drug Safety, 15(8), 619–627. https://doi.org/10.1002/pds.1247

WHO. (2021). Hypertension. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/hypertension

Wu, Y., Zhang, Y., Gou, L., Yang, L., Wang, H., & Wang, H. (2020). Research on heart disease prediction based on random forest and ensemble learning. Healthcare Technology Letters, 7(4), 128–132. https://doi.org/10.1049/htl.2019.0022

Yanith, A. R., Ginting, F. D., & Siregar, A. I. (2021). Penerapan algoritma decision tree untuk prediksi penyakit jantung. Jurnal Teknik Informatika dan Sistem Informasi, 7(2), 87–92. https://doi.org/10.31933/josis.v7i2.664

Authors

Andri Prasetiyo
andriprasetiyo@univpancasila.ac.id (Primary Contact)
Aqilah Idelia Indriani
Karina Natasya Ramadhani
Amitta Natthawani
Islami Al-Kaffah Ramadhan
Amira Thufailla Yogaswara
Cresentia Audrey
Esti Mulatsari
Esti Mumpuni
Nurulita Az Zahra
Prasetiyo, A., Indriani, A. I. ., Ramadhani, K. N. ., Natthawani, A. ., Ramadhan, I. A.-K., Yogaswara, A. T. ., Audrey, C. ., Mulatsari, E. ., Mumpuni, E. ., & Zahra, N. A. . (2025). In Silico Exploration of Orthosiphon stamineus Compounds as Potential Angiotensin Receptor Blockers for Hypertension Therapy. Jurnal Jamu Indonesia, 10(3), 176–181. https://doi.org/10.29244/jji.v10i3.370

Article Details

How to Cite

Prasetiyo, A., Indriani, A. I. ., Ramadhani, K. N. ., Natthawani, A. ., Ramadhan, I. A.-K., Yogaswara, A. T. ., Audrey, C. ., Mulatsari, E. ., Mumpuni, E. ., & Zahra, N. A. . (2025). In Silico Exploration of Orthosiphon stamineus Compounds as Potential Angiotensin Receptor Blockers for Hypertension Therapy. Jurnal Jamu Indonesia, 10(3), 176–181. https://doi.org/10.29244/jji.v10i3.370

Similar Articles

You may also start an advanced similarity search for this article.