In Silico Study of Bioactive Compounds in Herba Sambiloto (Andrographis paniculata Burm. F. Nees) as HIV-1 Reverse Transcriptase Inhibitor

Andri Prasetiyo(1), Titiek Martati(2), Putri Windari Saputra(3)
(1) Faculty of Pharmacy, Universitas Pancasila, Jakarta, Indonesia,
(2) Faculty of Pharmacy, Universitas Pancasila, Jakarta, Indonesia,
(3) Faculty of Pharmacy, Universitas Pancasila, Jakarta, Indonesia

Abstract

A medicinal plant known as sambiloto (Andrographis paniculata Burm. F. Nees) contains certain active compounds that potentially are anti-HIV. However, it is not yet known which compounds are involved in inhibiting HIV activity. This study aimed to identify potentially active compounds from the sambiloto plant that could inhibit the HIV-1 reverse transcriptase enzyme using the in-silico method. In silico methods that will be carried out are internal validation, molecular docking, ADMET prediction, and molecular dynamics. The molecular docking results showed that the five best compounds have potential as anti-HIV drugs compared to efavirenz with the rerank score -152.119 until -125.177 kcal/mol. In contrast, the rerank score of the comparison ligand is -94.7639 kcal/mol. The ADMET prediction showed that the selected compounds have a good pharmacokinetics profile and are nontoxic. The molecular dynamic results showed that deoxy-11,12-didehydroandrographiside and andropraphiside are stable and have potential as anti-HIV drugs with average RMSD values of 1.88 and 2.02 Å while the comparison ligand is 1.67 Å.

Full text article

Generated from XML file

References

Abdullah, S. S., Putra, P. P., Antasionasti, I., Rundengan, G., Suoth, E. J., Abdullah, R. P. I., & Abdullah, F. (2021). Analisis sifat fisikakimia, farmakokinetik dan toksikologi pada pericarpium pala (Myristica fragrans) secara artificial intelligence. Chem. Prog, 14(2), 81–92. https://doi.org/10.35799/cp.14.2.2021.37112

Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & Chimusa, E. R. (2020). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21(5), 1663–1675. https://doi.org/10.1093/bib/bbz103

Biswas, P., Dey, D., Rahman, A., Islam, M. A., Susmi, T. F., Kaium, M. A., Hasan, M. N., Rahman, M. H., Mahmud, S., Saleh, M. A., Paul, P., Rahman, M. R., Al Saber, M., Song, H., Rahman, M. A., & Kim, B. (2021). Analysis of SYK gene as a prognostic biomarker and suggested potential bioactive phytochemicals as an alternative therapeutic option for colorectal cancer: An in-silico pharmaco-informatics investigation. Journal of Personalized Medicine, 11(9). https://doi.org/10.3390/jpm11090888

Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro Virtual Docker for Docking. In W. F. de Azevedo Jr (Ed.), Methods Mol Biol (Vol. 2053). Humana Press. https://doi.org/10.1007/978-1-4939-9752-7_12

Cai, W., Wen, H., Zhou, Q., Wu, L., Chen, Y., Zhou, H., & Jin, M. (2020). 14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity. Antiviral Research, 181(July), 104885. https://doi.org/10.1016/j.antiviral.2020.104885

Chen, Y. C. (2015). Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001

Echeverría, J., Opazo, J., Mendoza, L., Urzúa, A., & Wilkens, M. (2017). Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules, 22(4). https://doi.org/10.3390/molecules22040608

Hardjono, S. (2015). Prediksi Sifat Farmakokinetik, Toksisitas dan Aktivitas Sitotoksik Turunan N-Benzoil-N’-(4-fluorofenil)tiourea sebagai Calon Obat Antikanker melalui Pemodelan Molekul (Prediction of Pharmacokinetic Properties, Toxicity and Derivatives as Anticancer Drugs. Jurnal Ilmu Kefarmasian Indonesia, 14(2), 246–255.

Intharuksa, A., Arunotayanun, W., Yooin, W., & Sirisa-ard, P. (2022). A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules, 27(14). https://doi.org/10.3390/molecules27144479

Jiang, M., Sheng, F., Zhang, Z., Ma, X., Gao, T., Fu, C., & Li, P. (2021). Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents. Journal of Ethnopharmacology, 272(February), 113954. https://doi.org/10.1016/j.jep.2021.113954

Kementrian Kesehatan Repulbik Indonesia. (2019). Pedoman nasional pelayanan kedokteran tata laksana HIV (pp. 1–154).

Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in Molecular Biology, 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6_10

Maeda, K., Das, D., Kobayakawa, T., Tamamura, H., & Takeuchi, H. (2019). Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Current Topics in Medicinal Chemistry, 19(18), 1621–1649. https://doi.org/10.2174/1568026619666190712204603

Manalu, R. T., Rachmatiah, T., & Tri Maratuzzakiyah. (2022). In Silico Study of The Active Compound of The Sambiloto Plant (Andrographis paniculata Ness.) on HIV-1 Protease Receptors. East Asian Journal of Multidisciplinary Research, 1(6), 1147–1156. https://doi.org/10.55927/eajmr.v1i6.601

Mehta, S., Sharma, A. K., & Singh, R. K. (2021). Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update. Phytomedicine Plus, 1(4), 100085. https://doi.org/10.1016/j.phyplu.2021.100085

Merati, T. P., Karyana, M., Tjitra, E., Kosasih, H., Aman, A. T., Alisjahbana, B., Lokida, D., Arlinda, D., Maldarelli, F., Neal, A., Arif, M., Gasem, M. H., Lukman, N., Sudarmono, P., Lau, C. Y., Hadi, U., Lisdawati, V., Wulan, W. N., Lane, H. C., & Siddiqui, S. (2021). Prevalence of HIV infection and resistance mutations in patients hospitalized for febrile illness in Indonesia. American Journal of Tropical Medicine and Hygiene, 105(4), 960–965. https://doi.org/10.4269/ajtmh.20-1595

Ozvoldik, K., Stockner, T., & Krieger, E. (2023). YASARA Model-Interactive Molecular Modeling from Two Dimensions to Virtual Realities. Journal of Chemical Information and Modeling, 63(20), 6177–6182. https://doi.org/10.1021/acs.jcim.3c01136

Paruch, K., Biernasiuk, A., Berecka‐rycerz, A., Hordyjewska, A., & Popiołek, Ł. (2021). Biological activity, lipophilicity and cytotoxicity of novel 3‐acetyl‐2,5‐disubstituted‐1,3,4‐oxadiazolines. International Journal of Molecular Sciences, 22(24), 1–16. https://doi.org/10.3390/ijms222413669

Prasetiyo, A., Kumala, S., Mumpuni, E., & Tjandrawinata, R. R. (2022). Validation of structural-based virtual screening protocols with the PDB Code 3G0B and prediction of the activity of Tinospora crispa compounds as inhibitors of dipeptidyl-peptidase-IV. 8(1), 95–102. https://doi.org/10.3897/rrpharmacology.8.76237

Prasetiyo, A., Kumala, S., Mumpuni, E., Tjandrawinata, R. R., & Sulastri, L. (2023). Uji Aktivitas Penghambatan Dipeptidyl peptidase-4 (DPP-4) Senyawa dari Lima Tanaman Indonesia secara In-silico. Jurnal Fitofarmaka Indonesia, 10(1), 1–10. https://doi.org/10.33096/jffi.v10i1.884

Prasetiyo, A., Mumpuni, E., & Tjandrawinata, R. R. (2019). Docking molekular dari trigonella foenum-graceum sebagai antidiabetes menggunakan molegro virtual docking. Jurnal Jamu Indonesia., 4(2), 74–80.

Putra, O. N. (2021). Survei cross sectional efek samping obat antiretroviral (ARV) pada pasien HIV rawat jalan dengan algoritma Naranjo. Jurnal Ilmiah Farmasi (Scientific Journal of Pharmacy), 17(1), 34–45. https://doi.org/https://doi.org/10.20885/jif.vol17.iss1.art4

Rani, P., Chakraborty, M. K., Sah, R. P. R. P. R. P., Subhashi, A., Disna, R., UIP, P., Chaudhary, D. P., Kumar, A. A. A. A. A., Kumar, R. R., Singode, A., Mukri, G., Sah, R. P. R. P. R. P., Tiwana, U. S., Kumar, B., Madhav, P., Manigopa, C., Z, A. H., Anita, P., Rameshwar, P. S., … Kumar, A. A. A. A. A. (2020). Molecular docking and molecular dynamic simulation approaches for drug development and repurposing of drugs for severe acute respiratory syndrome-Coronavirus-2. In Range Management and Agroforestry (Vol. 4, Issue 1). https://doi.org/10.1016/j.fcr.2017.06.020

Siswanto, I., Pranowo, H. D., & Mudasir. (2019). Docking of new designed compounds derived from 1,6-dihydro-1,3,5-triazine-2,4-diamine toward quadruple mutant plasmodium dihydrofolate reductase. Indonesian Journal of Chemistry, 19(3), 777–785. https://doi.org/10.22146/ijc.39943

Sulistyowaty, M. I., Putra, G. S., Budiati, T., Indrianingsih, A. W., Anwari, F., Kesuma, D., Matsunami, K., & Yamauchi, T. (2023). Synthesis, In Silico Study, Antibacterial and Antifungal Activities of N-phenylbenzamides. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24032745

Thomsen, R., & Christensen, M. H. (2006). MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem, 43, 3315–3321. https://doi.org/10.1016/j.physletb.2008.03.048

Authors

Andri Prasetiyo
andriprasetiyo@univpancasila.ac.id (Primary Contact)
Titiek Martati
Putri Windari Saputra
In Silico Study of Bioactive Compounds in Herba Sambiloto (Andrographis paniculata Burm. F. Nees) as HIV-1 Reverse Transcriptase Inhibitor. (2024). Jurnal Jamu Indonesia, 9(2), 95–105. https://doi.org/10.29244/jji.v9i2.300

Article Details

How to Cite

In Silico Study of Bioactive Compounds in Herba Sambiloto (Andrographis paniculata Burm. F. Nees) as HIV-1 Reverse Transcriptase Inhibitor. (2024). Jurnal Jamu Indonesia, 9(2), 95–105. https://doi.org/10.29244/jji.v9i2.300

Similar Articles

You may also start an advanced similarity search for this article.