Efek Sinergis Bahan Aktif Tanaman Obat Berbasiskan Jejaring Dengan Protein Target

Nur Hilal A. Syahrir(1), Farit Mochamad Afendi(2), Budi Susetyo(3)
(1) Program Studi Statistika Terapan, Sekolah Pascasarjana Institut Pertanian Bogor, Indonesia ,
(2) Departemen Statistika, FMIPA, Institut Pertanian Bogor, Indonesia,
(3) Departemen Statistika, FMIPA, Institut Pertanian Bogor, Indonesia

Abstract

Medicinal plants contain inherently active ingredients. Such ingredients are beneficial to prevent and cure diseases, as well as to perform specific biological functions. In contrast to synthetic drugs, which is based on one single chemicals, medicinal plants exert their beneficial effects through the additive or synergistic action of several chemical compounds. Those chemical compound act on single or multiple targets (multicomponent therapeutic) associated with a physiological process. Active ingredients combinations show a synergistic effect. This means that the combinational effect of several active ingredients is greater than that of individual one acting separately. A network target can be used to identify synergistic effects of plants active ingredients. The method of NIMS (Network target-based Identification of Multicomponent Synergy) is a computational approach to identify the potential synergistics effect of active ingredients. It also assessess synergistic strength of any active ingradients at the molecular level by synergy scores. We investigate these synergistic on a Jamu formula for diabetes mellitus type 2.  The Jamu formula is composed of four medicinal plants, namely Tinospora crispa , Zingiber officinale, Momordica charantia, and Blumea balsamivera. Our work succesfully demonstrates that the highest synergy scores on medicinal plants synergy can be seen in pairs of several active ingredients in Zingiber officinale. On the other hand, the synergy of pairs of active ingredients in Momordica charantia and Zingiber officinale posseses a relatively high score. The same occurs in Tinospora crispa and Zingiber officinale.

Full text article

Generated from XML file

References

Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y , Nakamura K , Ikeda S , Takahashi H , Altaf-Ul-Amin M, Darusman LK , Saito K, Kanaya S. 2012. KNApSAcK Family databases: Integrated metabolite–plant species databases for multifaceted plant research. Plant and Cell Physiol. 53(2):1-12.

Apweiler R, Bairoch A, Wu CH, et al. 2004. UniProt: the Universal Protein knowledgebase. Nucleic Acids Research. 32 (1):D115-D119.

Goel R, Harsha HC, Pandey A, et al. 2012. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Molecular BioSystems. 8(2):453-463.

Hamosh A, Scott AF, Amberger JS et al. 2005 Online Mendelian Inheriantace in Man (OMMIM), a knowladgebase of human genes and genetic disorders. Nucleic Acids Research. 33:D514-D517.

Hesterberg T, Monaghan S, Moore DS, Clipson A, Epstein R. 2003. Bootstrap Methods and Permutation Tests. New York (US): W. H. Freeman and Company

Katno, Pramono S. 2008. Tingkat manfaat dan keamanan tanaman obat dan obat tradisional. Balai Penelitian Tanaman Obat Tawangmangu, Fakultas Farmasi, UGM. Diakses pada tanggal 09 Juni 2015 pada perpustakaan.depkes.go.id:8180/.../BK2008-G105.pdf

Li S, Zhang B. 2013. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chinese Journal of Natural Medicines. 11(2):0110−0120.

Li S, Zhang Bo, Zhang NB. 2011. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Systems Biology. 5(1).1-13.

Li Y, Li R, Ouyang Z, Li S. 2015. Herb Network Analysis for a Famous TCM Doctor's Prescriptions on Treatment of Rheumatoid Arthritis. Evidence-Based Complementary and Alternative Medicine. 2015:1-9.

Li H, Zhao L , Zhang B, et al. 2014. A Network Pharmacology Approach to Determine Active Compounds and Action Mechanisms of Ge-Gen-Qin-Lian Decoction for Treatment of Type 2 Diabetes. Evidence-Based Complementary and Alternative Medicine. 2014:1-12.

Mudunuri U, Che A, Yi M, Stephens RM. 2009. bioDBnet: the biological database network. Bioinformatics. 25(4):555–556.

Nurishmaya MR. 2014. Pendekatan bioinformatika formulasi jamu baru berkhasiat antidiabetes dengan ikan zebra (Danio rerio) sebagai hewan model [skripsi]. Bogor (ID): Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.

Running WE. 1993. Chapman and Hall dictionary of natural products on CD-ROM. Journal of Chemical Information and Computer Sciences. 33:934–935.

Authors

Nur Hilal A. Syahrir
Farit Mochamad Afendi
fmafendi@gmail.com (Primary Contact)
Budi Susetyo
Author Biography

Nur Hilal A. Syahrir, Program Studi Statistika Terapan, Sekolah Pascasarjana Institut Pertanian Bogor, Indonesia

r

Efek Sinergis Bahan Aktif Tanaman Obat Berbasiskan Jejaring Dengan Protein Target. (2016). Jurnal Jamu Indonesia, 1(1), 35-46. https://doi.org/10.29244/jji.v1i1.6

Article Details

How to Cite

Efek Sinergis Bahan Aktif Tanaman Obat Berbasiskan Jejaring Dengan Protein Target. (2016). Jurnal Jamu Indonesia, 1(1), 35-46. https://doi.org/10.29244/jji.v1i1.6

Penguraian Mekanisme Kerja Jamu Berdasarkan Jejaring Bahan Aktif-Protein Target-Gene Ontology

Vitri Aprilla Handayani, Farit Mochamad Afendi, Wisnu Ananta Kusuma
Abstract View : 676
Download :276

Penguraian Mekanisme Kerja Jamu dengan Menggunakan Analisis Graf Tripartit pada Jejaring Senyawa-Protein-Penyakit

Muchlishah Rosyadah, Farit Mochamad Afendi, Wisnu Ananta Kusuma
Abstract View : 455
Download :738