Molecular Docking Study of Bioactive Compounds from Curcuma aeruginosa Roxb. as Antioxidant and Anticancer Activities

Laksmi Ambarsari(1), Siti Nurjanah(2), I Made Artika(3), Rizka Fatriani(4)
(1) Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia,
(2) Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia,
(3) Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia,
(4) Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia

Abstract

Cancer is one type of dangerous disease that is increasing every year. Free radicals are the cause of gene mutations (cancer). Cancer will develop uncontrollably due to the occurrence of the cell cycle and the presence of compounds that trigger cell proliferation and inhibit the process of apoptosis. This cancer treatment is carried out by giving cyclin-dependent kinase2 (CDK2) and cyclooxygenase-2 (COX-2) inhibitor drugs to inhibit cancer development, as well as lipoxygenase (LOX) inhibitor drugs for the formation of free radicals. Curcuma aeruginosa RoxB., the plant, is known to have the potential for antioxidant and anticancer properties. This study aims to determine the molecular interaction between the dominant compound in the ethanol extract of C. aeruginosa with CDK2, COX-2, and LOX receptors. The type of ligand interaction with the receptor was determined through the parameters of affinity energy (∆G), inhibition constant (Ki), type of interaction, and percentage of binding site similarity (%BSS). The results showed that the gajutsulacton A had the best potential in inhibiting CDK2. The cucumenol may be a COX-2 inhibitor, and there are no compounds that can inhibit LOX as well as an antioxidant. Thus, our findings demonstrate the potential for C. aeruginosa bioactive to serve as anticancer candidate molecules against CDK2 and COX-2 receptors.

Full text article

Generated from XML file

References

Adelina, R. (2018). Mekanisme Katekin Sebagai Obat Antidislipidemia (Uji In Silico). Buletin Penelitian Kesehatan, 46(3), 147–154. https://doi.org/10.22435/bpk.v46i3.899

Angel, G. R., Vimala, B., & Nambisan, B. (2012). Phenolic content and antioxidant activity in five underutilized starchy Curcuma species. International Journal of Pharmacognosy and Phytochemical Research, 4(2), 69–73. www.ijppr.com

Anitha, K., Gopi, G., Kumar, P. S., College, M., Road, C. T. M. X., Dt, C., & Pradesh, A. (2013). Molecular Docking Study on Dipeptidyl Peptidase-4 Inhibitors. International Journal of Research and Development in Pharmacy and Life Sciences, 2(5), 602–610. www.ijrdpl.com

Arba, M., Ihsan, S., Ramadhan, L. O. A. N., & Tjahjono, D. H. (2017). In silico study of porphyrin-anthraquinone hybrids as CDK2 inhibitor. Computational Biology and Chemistry, 67, 9–14. https://doi.org/10.1016/j.compbiolchem.2016.12.005

Badan Penelitian dan Pengembangan Kesehatan. (2019). Laporan Nasional RISKESDAS 2018. In Kementrian Kesehatan Republik Indonesia (p. 674). Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan.

Choudhury, D., Ghosal, M., Das, A. P., & Mandal, P. (2013). Development of single node cutting propagation techniques and evaluation of antioxidant activity of Curcuma aeruginosa Roxburgh rhizome. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2), 227–234.

Das, B., & Samanta, S. (2015). Design, docking studies of chalcone peptide hybrid compound as anti-inflammatory andanti-arthritic agent. International Journal of Pharmaceutical Research, 7(2), 58–64.

Dermawan, D., Sumirtanurdin, R., & Dewantisari, D. (2019). Molecular Dynamics Simulation Estrogen Receptor Alpha againts Andrographolide as Anti Breast Cancer. Indonesian Journal of Pharmaceutical Science and Technology, 6(2), 65. https://doi.org/10.24198/ijpst.v6i2.18168

Ding, L., Cao, J., Lin, W., Chen, H., Xiong, X., Ao, H., Yu, M., Lin, J., & Cui, Q. (2020). The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. In International Journal of Molecular Sciences (Vol. 21, Issue 6). Int J Mol Sci. https://doi.org/10.3390/ijms21061960

Fakhruri, M., Rahmayanti, Y., & Isfanda. (2021). Potensi Fitokimia Citrus Aurantium (Hesperetin, Naringenin) Dalam Menghambat Xantin Okisidase Pada Hiperurisemia Secara In Silico. Jurnal Health Sains, 2(1), 79–89. https://doi.org/10.46799/jhs.v2i1.80

Fishbein, A., Hammock, B. D., Serhan, C. N., & Panigrahy, D. (2021). Carcinogenesis: Failure of resolution of inflammation? In Pharmacology and Therapeutics (Vol. 218, p. 107670). Elsevier. https://doi.org/10.1016/j.pharmthera.2020.107670

Głowacki, E. D., Irimia-Vladu, M., Bauer, S., & Sariciftci, N. S. (2013). Hydrogen-bonds in molecular solids-from biological systems to organic electronics. In Journal of Materials Chemistry B (Vol. 1, Issue 31, pp. 3742–3753). The Royal Society of Chemistry. https://doi.org/10.1039/c3tb20193g

Jantan, I., Rafi, I. A. A., & Jalil, J. (2005). Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants. Phytomedicine, 12(1–2), 88–92. https://doi.org/10.1016/j.phymed.2003.06.006

Jose, S., & Thomas, T. D. (2014). Comparative phytochemical and anti-bacterial studies of two indigenous medicinal plants Curcuma caesia Roxb. and Curcuma aeruginosa Roxb. International Journal of Green Pharmacy, 8(1), 65–71. https://doi.org/10.4103/0973-8258.126828

Kartasasmita, R. E., Anugrah, R., & Tjahjono, D. H. (2015). Kajian docking dan prediksi beberapa aspek farmakokinetika desain molekul turunan kuinin sebagai upaya menemukan kandidat senyawa antimalaria yang baru. Kartika Jurnal Ilmiah Farmasi, 3(1), 6–13. https://doi.org/10.26874/kjif.v3i1.13

Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. In Advanced Drug Delivery Reviews (Vol. 101, pp. 34–41). Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2016.04.029

Lo, J. Y., Kamarudin, M. N. A., Hamdi, O. A. A., Awang, K., & Kadir, H. A. (2015). Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food and Function, 6(11), 3550–3559. https://doi.org/10.1039/c5fo00607d

Makabe, H., Maru, N., Kuwabara, A., Kamo, T., & Hirota, M. (2006). Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Natural Product Research, 20(7), 680–685. https://doi.org/10.1080/14786410500462900

Mardianingrum, R., Herlina, T., & Supratman, U. (2015). Isolasi dan molecular docking senyawa 6, 7-dihidro-17-hidroksierisotrin dari daun dadap belendung (Erythrina poeppigiana) terhadap aktivitas sitotoksik antikanker payudara MCF-7. Chimica et Natura Acta, 3(3). https://doi.org/10.24198/cna.v3.n3.9213

Monika, Kour, J., & Singh, K. (2013). Virtual screening using the ligand ZINC database for novel lipoxygenase-3 inhibitors. Bioinformation, 9(11), 583–587. https://doi.org/10.6026/97320630009583

Nurrochmad, A. (2004). Review: The new paradigm of curcumin and its anticancer activity. Biofarmasi Journal of Natural Product Biochemistry, 2(2), 75–80. https://doi.org/10.13057/biofar/f020206

Pingaew, R., Prachayasittikul, V., Anuwongcharoen, N., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2018). Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorganic Chemistry, 79, 171–178. https://doi.org/10.1016/j.bioorg.2018.05.002

Pintatum, A., Maneerat, W., Logie, E., Tuenter, E., Sakavitsi, M. E., Pieters, L., Berghe, W. Vanden, Sripisut, T., Deachathai, S., & Laphookhieo, S. (2020). In vitro anti‐inflammatory, anti‐oxidant, and cytotoxic activities of four curcuma species and the isolation of compounds from curcuma aromatica rhizome. Biomolecules, 10(5). https://doi.org/10.3390/biom10050799

Pratama, R., Ambarsari, L., & Sumaryada, T. I. (2017). Molecular Interaction Analysis of COX-2 against Curcuminoid and Xanthorizol Ligand as Anti Breast Cancer using Molecular Docking. Current Biochemistry, 2(3), 139–149. https://doi.org/10.29244/cb.2.3.139-149

Pujiastuti, M. W., & Sanjaya, I. G. M. (2017). Penentuan Aktivitas Senyawa Turunan Mangiferin Sebagai Antidiabetes Pada Diabetes Mellitus Tipe 2 Secara in Silico Determination of Mangiferin Derived Compounds As Antidiabetic for Type 2 Diabetes Mellitus With in Silico. UNESA Journal of Chemistry, 6(3), 172–176. https://doi.org/10.26740/UJC.V6N3.P

Purnomo, H., Agistia, D. D., Tegar, M., & Nugroho, A. E. (2013). Interaction between active compounds from aegle marmelos correa. As anti inflamation agent with COX-1 and COX-2 receptor. Traditional Medicine Journal, 18(2), 2013. https://www.neliti.com/id/publications/180900/

Qiao, A., Wang, Y., Xiang, L., Zhang, Z., & He, X. (2015). Novel triterpenoids isolated from hawthorn berries functioned as antioxidant and antiproliferative activities. Journal of Functional Foods, 13, 308–313. https://doi.org/10.1016/j.jff.2014.12.047

Rachmania, R. A., Hariyanti, H., Zikriah, R., & Sultan, A. (2018). Studi In Silico Senyawa Alkaloid Herba Bakung Putih (Crinum Asiaticum L.) pada Penghambatan Enzim Siklooksigenase (COX). Jurnal Kimia VALENSI, 4(2), 124–136. https://doi.org/10.15408/jkv.v4i2.7686

Rachmania, R. A., Supandi, & Larasati, O. A. (2018). Analisis In-Silico Senyawa Diterpenoid Lakton Herba Sambioto (Andrographis Paniculata Nees) pada Reseptor Alpha-Glukosidase Sebagai Antidiabetes Tipe II. Pharmacy, 12(02), 210–222. https://www.neliti.com/publications/160638/

Ruswanto, R., Ratnasari, A., & Tuslinah, L. (2015). Sintesis senyawa n’-(3, 5-dinitrobenzoyl)-isonicotinohydrazide dan studi interaksinya pada mycobacterium tuberculosis enoyl acyl carrier protein reductase (INHA). Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-Ilmu Keperawatan, Analis Kesehatan Dan Farmasi, 14(1), 63. https://doi.org/10.36465/jkbth.v14i1.112

Salahudeen, M. S., & Nishtala, P. S. (2017). An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. In Saudi Pharmaceutical Journal (Vol. 25, Issue 2, pp. 165–175). Saudi Pharm J. https://doi.org/10.1016/j.jsps.2016.07.002

Seeliger, D., & De Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6

Septaningsih, D. A., Darusman, L. K., Afendi, F. M., & Heryanto, R. (2018). Liquid chromatography mass spectrometry (LC-MS) fingerprint combined with chemometrics for identification of metabolites content and biological activities of Curcuma Aeruginosa. Indonesian Journal of Chemistry, 18(1), 43–52. https://doi.org/10.22146/ijc.25456

Shewchuk, L., Hassell, A., Wisely, B., Rocque, W., Holmes, W., Veal, J., & Kuyper, L. F. (2000). Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. Journal of Medicinal Chemistry, 43(1), 133–138. https://doi.org/10.1021/jm990401t

Sumaryada, T., Astarina, A. S., & Ambarsari, L. (2021). Molecular docking and physicochemical analysis of the active compounds of soursop (Annona muricata linn) for an anti-breast cancer agent. Biointerface Research in Applied Chemistry, 11(4), 11380–11389. https://doi.org/10.33263/BRIAC114.1138011389

Sun, D. X., Fang, Z. Z., Zhang, Y. Y., Cao, Y. F., Yang, L., & Yin, J. (2010). Inhibitory effects of curcumenol on human liver cytochrome P450 enzymes. Phytotherapy Research, 24(8), 1213–1216. https://doi.org/10.1002/ptr.3102

Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., Shi, W., Jiang, J., Yao, P. P., & Zhu, H. P. (2017). Risk factors and preventions of breast cancer. In International Journal of Biological Sciences (Vol. 13, Issue 11, pp. 1387–1397). Ivyspring International Publisher. https://doi.org/10.7150/ijbs.21635

Suphrom, N., Pumthong, G., Khorana, N., Waranuch, N., Limpeanchob, N., & Ingkaninan, K. (2012). Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia, 83(5), 864–871. https://doi.org/10.1016/j.fitote.2012.03.017

Syahputra, G., Ambarsari L, & T, S. (2014). Simulasi Docking Kurkumin Enol, Bisdemetoksikurkumin dan Analognya Sebagai Inhibitor Enzim12-Lipoksigenase. Journal Biofisika, 10(1), 55–67. https://journal.ipb.ac.id/index.php/biofisika/article/view/9354

Tu, H., & Shi, T. (2013). Ligand binding site similarity identification based on chemical and geometric similarity. Protein Journal, 32(5), 373–385. https://doi.org/10.1007/s10930-013-9494-1

Tumilaar, S. G., Siampa, J. P., & Tallei, T. E. (2021). Penambatan Molekuler Senyawa Bioaktif dari Ekstrak Etanol Daun Pangi (Pangium edule) Terhadap Reseptor Protease HIV-1. JURNAL ILMIAH SAINS, 21(1), 6. https://doi.org/10.35799/jis.21.1.2021.30282

Wang, M., Zhang, X. J., Liu, F., Hu, Y., He, C., Li, P., Su, H., & Wan, J. B. (2015). Saponins isolated from the leaves of Panax notoginseng protect against alcoholic liver injury via inhibiting ethanol-induced oxidative stress and gut-derived endotoxin-mediated inflammation. Journal of Functional Foods, 19, 214–224. https://doi.org/10.1016/j.jff.2015.09.029

Waras, N., Nurul, K., Muhamad, S., Maria, B., & Ardyani, I. D. A. A. C. (2015). Phytochemical screening, antioxidant and cytotoxic activities in extracts of different rhizome parts from Curcuma aeruginosa RoxB. International Journal of Research in Ayurveda and Pharmacy, 6(5), 634–637. https://doi.org/10.7897/2277-4343.065118

Wisastra, R., & Dekker, F. J. (2014). Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. In Cancers (Vol. 6, Issue 3, pp. 1500–1521). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cancers6031500

World Health Organization (WHO). (n.d.). Cancer. Retrieved December 10, 2020, from https://www.who.int/news-room/fact-sheets/detail/cancer

Xu, S., Jashim Uddin, M., Banerjee, S., Duggan, K., Musee, J., Kiefer, J. R., Ghebreselasie, K., Rouzer, C. A., & Marnett, L. J. (2019). Fluorescent indomethacin-dansyl conjugates utilize the membrane-binding domain of cyclooxygenase-2 to block the opening to the active site. In Journal of Biological Chemistry (Vol. 294, Issue 22, pp. 8690–8698). J Biol Chem. https://doi.org/10.1074/jbc.RA119.007405

Yang, X., Zhou, Y., Chen, Z., Chen, C., Han, C., Li, X., Tian, H., Cheng, X., Zhang, K., Zhou, T., & Zhao, J. (2021). Curcumenol mitigates chondrocyte inflammation by inhibiting the NF-κB and MAPK pathways, and ameliorates DMM-induced OA in mice. International Journal of Molecular Medicine, 48(4). https://doi.org/10.3892/ijmm.2021.5025

Yu, F. X., Zhao, B., & Guan, K. L. (2015). Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. In Cell (Vol. 163, Issue 4, pp. 811–828). Cell. https://doi.org/10.1016/j.cell.2015.10.044

Zhang, R., Pan, T., Xiang, Y., Zhang, M., Xie, H., Liang, Z., Chen, B., Xu, C., Wang, J., Huang, X., Zhu, Q., Zhao, Z., Gao, Q., Wen, C., Liu, W., Ma, W., Feng, J., Sun, X., Duan, T., … Sui, X. (2022). Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioactive Materials, 13, 23–36. https://doi.org/10.1016/j.bioactmat.2021.11.013

Zheng, X., & Polli, J. (2010). Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters. European Journal of Pharmaceutical Sciences, 41(1), 43–52. https://doi.org/10.1016/j.ejps.2010.05.013

Zhong, Z., Tan, W., Chen, X., & Wang, Y. (2014). Furanodiene, a natural small molecule suppresses metastatic breast cancer cell migration and invasion in vitro. European Journal of Pharmacology, 737, 1–10. https://doi.org/10.1016/j.ejphar.2014.04.043

Authors

Laksmi Ambarsari
laksmi@apps.ipb.ac.id (Primary Contact)
Siti Nurjanah
I Made Artika
Rizka Fatriani
Molecular Docking Study of Bioactive Compounds from Curcuma aeruginosa Roxb. as Antioxidant and Anticancer Activities. (2023). Jurnal Jamu Indonesia, 8(2), 39-56. https://doi.org/10.29244/jji.v8i2.327

Article Details

How to Cite

Molecular Docking Study of Bioactive Compounds from Curcuma aeruginosa Roxb. as Antioxidant and Anticancer Activities. (2023). Jurnal Jamu Indonesia, 8(2), 39-56. https://doi.org/10.29244/jji.v8i2.327