Authentication of Java Turmeric (Curcuma xanthorrhiza) from Turmeric (Curcuma longa) Using a Combination of UV-VIS-IR Spectrum and Chemometrics
Abstract
Java turmeric (Curcuma xanthorriza) and turmeric (Curcuma longa) show similar colors, so they have the potential to be adulterated with each other, especially if they are presented in powder. This research aims to develop an analytical method for authenticating both types of samples with adulterant concentrations of 0.01% w/w and 0.005% w/w for the infrared range and 0.5 μg/g and 1 μg/g for the UV-Vis range. The pure sample was extracted for 40 minutes with 1:10 ethanol using ultrasonication. The extract was then concentrated using a rotary evaporator and freeze dryer. Adulterant samples were prepared by mixing both types of extracts. The absorption of the solution was measured at a wavelength of 200–800 nm and a wave number of 4000–400 cm-1. Multivariate analysis using partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA) was performed on the spectra. PLS-DA has not been able to authenticate adulterated samples. However, SIMCA analysis can detect differences between pure curcuma and adulterated samples in the infrared range until a concentration of 0.005% w/w, while it can only authenticate correctly in the UV-Vis range until a 1 μg/g concentration.
Full text article
References
Aboulwafa, M. M., Youssef, F. S., Gad, H. A., Sarker, S. D., Nahar, L., Al-Azizi, M. M., & Ashour, M. L. (2019). Authentication and discrimination of green tea samples using UV–vis, FTIR and HPLC techniques coupled with chemometrics analysis. Journal of Pharmaceutical and Biomedical Analysis, 164, 653–658. https://doi.org/10.1016/j.jpba.2018.11.036
Angeline, E., Susidarti, R. A., & Rohman, A. (2019). Rapid authentication of turmeric powder adulterated with Curcuma zedoaria and Curcuma xanthorrhiza using FTIR-ATR spectroscopy and chemometrics. International Journal of Applied Pharmaceutics, 11(5), 216–221. https://doi.org/10.22159/ijap.2019v11i5.33701
Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part 1: Linear models. PLS-DA. In Analytical Methods (Vol. 5, Issue 16, pp. 3790–3798). The Royal Society of Chemistry. https://doi.org/10.1039/c3ay40582f
Benassi, R., Ferrari, E., Lazzari, S., Spagnolo, F., & Saladini, M. (2008). Theoretical study on Curcumin: A comparison of calculated spectroscopic properties with NMR, UV-vis and IR experimental data. Journal of Molecular Structure, 892(1–3), 168–176. https://doi.org/10.1016/j.molstruc.2008.05.024
de León-Solis, C., Casasola, V., & Monterroso, T. (2023). Metabolomics as a tool for geographic origin assessment of roasted and green coffee beans. In Heliyon (Vol. 9, Issue 11, p. e21402). Elsevier. https://doi.org/10.1016/j.heliyon.2023.e21402
Dhakal, S., Chao, K., Schmidt, W., Qin, J., Kim, M., & Chan, D. (2016). Evaluation of turmeric powder adulterated with metanil yellow using ft-raman and ft-ir spectroscopy. Foods, 5(2), 1–15. https://doi.org/10.3390/foods5020036
Girme, A., Saste, G., Balasubramaniam, A. K., Pawar, S., Ghule, C., & Hingorani, L. (2020). Assessment of Curcuma longa extract for adulteration with synthetic curcumin by analytical investigations. Journal of Pharmaceutical and Biomedical Analysis, 191. https://doi.org/10.1016/j.jpba.2020.113603
Khanban, F., Bagheri Garmarudi, A., Parastar, H., & Toth, G. (2022). Evaluation of FT-IR spectroscopy combined with SIMCA and PLS‑DA for detection of adulterants in pistachio butter. Infrared Physics and Technology, 127, 104369. https://doi.org/10.1016/j.infrared.2022.104369
Kim, H., Lee, D. W., & Hwang, J. K. (2024). Curcuma xanthorrhiza extract and xanthorrhizol ameliorate cancer-induced adipose wasting in CT26-bearing mice by regulating lipid metabolism and adipose tissue browning. Integrative Medicine Research, 13(1), 101020. https://doi.org/10.1016/j.imr.2023.101020
Kucharska-Ambrożej, K., Martyna, A., Karpińska, J., Kiełtyka-Dadasiewicz, A., & Kubat-Sikorska, A. (2021). Quality control of mint species based on UV-VIS and FTIR spectral data supported by chemometric tools. Food Control, 129, 108228. https://doi.org/10.1016/j.foodcont.2021.108228
Nunes, A., Azevedo, G. Z., dos Santos, B. R., Lima, G. P. P., Moura, S., & Maraschin, M. (2024). Application of UV–vis spectrophotometry and chemometrics to investigate adulteration by glucose syrup in Brazilian polyfloral honey. Food and Humanity, 2, 100194. https://doi.org/10.1016/j.foohum.2023.12.002
Nunes, A., Azevedo, G. Z., Santos, B. R. dos, Liz, M. S. M. de, Schneider, F. S. de S., Rodrigues, E. R. de O., Moura, S., & Maraschin, M. (2023). A guide for quality control of honey: Application of UV–vis scanning spectrophotometry and NIR spectroscopy for determination of chemical profiles of floral honey produced in southern Brazil. Food and Humanity, 1, 1423–1435. https://doi.org/10.1016/j.foohum.2023.10.010
Nunes, A., Zilto Azevedo, G., Rocha dos Santos, B., Vanz Borges, C., Pace Pereira Lima, G., Conte Crocoli, L., Moura, S., & Maraschin, M. (2022). Characterization of Brazilian floral honey produced in the states of Santa Catarina and São Paulo through ultraviolet–visible (UV–vis), near-infrared (NIR), and nuclear magnetic resonance (NMR) spectroscopy. Food Research International, 162, 111913. https://doi.org/10.1016/j.foodres.2022.111913
Patra, D., & Barakat, C. (2011). Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1034–1041. https://doi.org/10.1016/j.saa.2011.04.016
Paul, A., & de Boves Harrington, P. (2021). Chemometric applications in metabolomic studies using chromatography-mass spectrometry. In TrAC - Trends in Analytical Chemistry (Vol. 135, p. 116165). Elsevier. https://doi.org/10.1016/j.trac.2020.116165
Rafi, M., Jannah, R., Heryanto, R., Kautsar, A., & Septaningsih, D. A. (2018). UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. International Food Research Journal, 25(2), 643–648.
Rafi, M., Wulansari, L., Heryanto, R., Darusman, L. K., Lim, L. W., & Takeuchi, T. (2015). Curcuminoid’s Content and Fingerprint Analysis for Authentication and Discrimination of Curcuma xanthorrhiza from Curcuma longa by High-Performance Liquid Chromatography-Diode Array Detector. Food Analytical Methods, 8(9), 2185–2193. https://doi.org/10.1007/s12161-015-0110-1
Rohman, A., Wijayanti, T., Windarsih, A., & Riyanto, S. (2020). The Authentication of Java Turmeric (Curcuma xanthorrhiza) Using Thin Layer Chromatography and 1H-NMR Based-Metabolite Fingerprinting Coupled with Multivariate Analysis. Molecules, 25(17). https://doi.org/10.3390/molecules25173928
Stocchero, M., De Nardi, M., & Scarpa, B. (2021). PLS for classification. Chemometrics and Intelligent Laboratory Systems, 216, 104374. https://doi.org/10.1016/j.chemolab.2021.104374
Suhandy, D., & Yulia, M. (2017). Peaberry coffee discrimination using UV-visible spectroscopy combined with SIMCA and PLS-DA. International Journal of Food Properties, 20, S331–S339. https://doi.org/10.1080/10942912.2017.1296861
Windarsih, A., Rohman, A., & Swasono, R. T. (2019). Application of 1H-NMR based metabolite fingerprinting and chemometrics for authentication of Curcuma longa adulterated with C. heyneana. Journal of Applied Research on Medicinal and Aromatic Plants, 13, 100203. https://doi.org/10.1016/j.jarmap.2019.100203
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Copyright @2017. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium