Main Article Content


Gotu kola (Centella asiatica) is a traditional herbal plant that has been reported have a variety of pharmacological activities. The compounds of gotu kola that play a role on pharmacological activities are triterpene group compounds, namely madecasosside (MD), asiaticoside (AS), madecassic acid (AM), and asiatic acid (AA). Stress can affect the production of biomass and secondary metabolite compounds in plants. The aims of the study is to analyze the effect of salinity and drought stress on biomass and 4 compounds of triterpene in gotu kola. Harvesting is done when the plant is 8 weeks old. The yield of the biomass was analyzed and then extracted using methanol solvent to be analyzed secondary metabolite levels using the high performance liquid chromatography (HPLC) method.  The lowest crop biomass was obtained at 50% of field capacity and 3,000 ppm salt content. The highest levels of MD and AS were established in conditions of 100% field capacity and 1,000 ppm salt content. The 50 and 100% field capacity and 1,000-3,000 ppm salt content did not affect the levels of AM and AA.


biomass abiotic stress triterpene

Article Details

How to Cite
Amallia, N., Mas’ud, Z. A. ., & Ratnadewi, D. . (2020). Production of Secondary Metabolite Compounds of Gotu Kola (Centella asiatica) Under Salinity and Drought Stress. Jurnal Jamu Indonesia, 5(2), 68–75.


  1. Affek HP, dan Yakir D. 2002. Protection by isoprene against singlet oxygen in leaves. Plant Physiol. 129:269-277. doi: 10.1104/pp.010909.
  2. Artanti N, Dewi RT, Maryanti F. 2014. Pengaruh lokasi dan pelarut pengekstraksi terhadap kandungan fitokimia dan aktivitas antioksidan ekstrak pegagan (Centella asiatica L. Urb). JKTI. 16(2):88-92.
  3. Bahadir-Acikara O, Ozbilgin S, Saltan-Iscan G, Dall’Acqua S, Rjaskova V, Ozgokce F, Suchy V, Smejkal K. 2018. Phytochemical analysis of Podospermum and Scorzonera n-hexane extracts and the HPLC quantitation of triterpenes. Molecules. 23:1-12. doi: 10.3390/molecules23071813.
  4. Basyuni M, Sagami H, Baba S, Oku H. 2019. Response of polyisoprenoid concentration and profile in three groups of mangrove seedlings of coping with long-term salinity. Biodiversitas. 20(1):320-326. doi: 10.13057/biodiv/d200137.
  5. Chiroma SM, Baharuldin MTH, Taib CMT, Amom Z, Jagadeesan S, Adean MI, Mahdi O, Moklas MAM. 2019. Protective effects of Centella asiatica on cognitive deficits induced by D-gal/AlCl3 via inhibition of oxidative stress and attenuation of acethylcholinesterase level. Toxics. 7:1-19. doi: 10.3390/toxics7020019.
  6. [Depkes RI] Departemen Kesehatan Republik Indonesia. 2009. Farmakope Herbal Indonesia. Ed ke-1. Jakarta (ID): Depkes RI.
  7. Dewi RT, Maryani F. 2015. Antioxidant and -glusidase inhibitory compounds of Centella asiatica. 17:147-152. Procedia Chem. doi: 10.1016/j.proche.2015.12.130.
  8. Fan J, Zhang R. 2004. Atmospheric oxidation mechanism of isoprene. Environ. Chem. 1:140-149. doi:10.1071/EN04045
  9. Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L. 2015. Comparative metabolic responses and adaptative strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biologi. 15:1-13. doi: 10.1186/s12870-015-0546-x.
  10. Hashim P, Sidek H, Helan MHM, Sabery A, Palanisamy UD, Ilham M. 2011. Molecules. 16:1310-1322. doi: 10.3390/molecules16021310.
  11. He W, Fu Z, Zeng G, Zhang Y, Han H, Yan H, Ji C, Chu H, Tan N. 2012. Terpene and lignan glycosides from the twigs and leaves of an endangered conifer, Cathaya argyrophylla. J Phytochem. 83:63-69. doi: 10.1016/j.phytochem.2012.07.013.
  12. Ibrahim MH, Shibli NI, Izad AA, Zain NAM. 2018. Growth, chlorophyll fluorescence, leaf gas exchange and phytochemicals of Centella asiatica exposed to salinity stress. ARRB. 27(2):1-13. doi: 10.9734/ARRB/2018/41014.
  13. Idris FN, Nadzir MM. 2017. Antimicrobial activity of Centella asiatica on Aspergillus niger and Bacillus subtilis. Chem Eng Transactions. 56:1381-1386. doi: 10.3303/CET1756231.
  14. Jimenez-Herrera R, Pacheco-Lopez B, Peragon J. 2019. Water stress, irrigation, and concentrations of pentacyclic triterpenes and phenols in Olea europaea L. cv. Picual olive trees. Antioxidants. 8(294):1-14. doi: 10.3390/antiox8080294.
  15. Mahajan S, Tuteja N. 2005. Cold, salinity, and drought stresses: an overview. Arch Biochem and Biophys. 444:139-158. doi: 10.1016/
  16. Maramaldi G, Togni S, Franceschi F, Lati E, 2013. Anti-inflammaging and antiglycation activity of a novel botanical ingredient from African biodiversity (Centevita). Clin Cosmet Investig Dermatol. 7:1-9. doi: 10.2147/CCID.S49924.
  17. Meng F, Luo Q, Wang Q, Zhang X, Qi Z, Xu F. 2016. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseu¬doacacia L.) subjected to salt stress. Sci Rep. 14:20299–20325. doi: 10.3390/ijms141020299.
  18. Mittler R. 2017. ROS are good. Trends Plant Sci. 22(1):11-19. doi: 10.1016/j.tplants.2016.08.002.
  19. Nomi AG. 2018. Pemrofilan metabolit pegagan (Centella asiatica) berdasarkan umur tanam menggunakan spektrum infra-merah dan kromatograsi cair [tesis]. Bogor (ID): Institut Pertanian Bogor.
  20. Parida AK, Panda A, Rangani J. 2018. Plant Metabolites and Regulation Under Environmental Stress. Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN, editor. Cambridge (GB): Elsevier Inc. hlm 89-131. doi: 10.1016/B978-0-12-812689-9.00005-4.
  21. Pitinidhipat N, Yasurin P. 2012. Antibacterial activity of Chrysanthemum indicum, Centella asiatica and Andrographis paniculate against Bacullus cereus and Listeria monocytogenes under osmotic stress. AU J.T. 15(4):239-245.
  22. Rafi M, Handayani F, Darusman LK, Rohaeti E, Yudiwanti W, Sulistiyani, Honda K, Putri SP. 2018. A combination of simultaneous quantification of four triterpenes and fingerprint analysis using HPLC for rapid identification of Centella asiatica from its related plants and classification based on cultivation ages. Ind Crop and Prod. 122(5):93-97. doi: 10.1016/j.indcrop.2018.05.062.
  23. Rahardjo M, Rosita SMD, Fathan R, Sudiarto. 1999. Pengaruh cekaman air terhadap mutu simplisia pegagan (Centella asiatica). Jurnal Littri. 5(3):92-97.
  24. Rattanakom S, Patchaneeyasurin. 2015. Chemical profiling of Centella asiatica under different extraction solvents and its antibacterial activity, antioxidant activity. Orient J Chem. 31(4):2453-2459. doi: 10.13005/ojc/310480.
  25. Saha S, Guria T, Singha T, Maity TK. 2013. Evaluation of analgesic and anti-inflammatory activity of chloroform and methanol extracts of Centella asiatica Linn. ISRN Pharmacol. 1-6. doi: 10.1155/2013/789613.
  26. Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J. 2012. Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ. 35:136-149. doi: 10.1111/j.1365-3040.2011.02423.x.
  27. Schone L, Schindelka J, Szeremeta E, Schaefer T, Hoffmann D, Rudzinski KJ, Szmigielski, Herrmann H. 2014. Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic acid, and acrylic acid – kinetics and product studies. Phys Chem Chem Phys. 16:6257-6272. doi: 10.1039/C3CP54859G.
  28. Wang L, Xu J, Zhao C, Zhao L, Feng B. 2013. Antiproliferative, cell-cycle dysregulation effects of novel asiatic acid derivatives on human non-small cell lung cancer cells. Chem Pharm Bull. 61(10):1015-1023. doi: 10.1248/cpb.c13-00328.
  29. Yao CH, Yeh JY, Chen YS, Li MH, Huang CH. 2015. Wound-healing effect of electrospun gelatin nanofibers containing Centella asiatica extract in a rat model. J Tissue Eng Regen Med. 11(3):905-915. doi: 10.1002/term.1992.
  30. Zhang J, Zhang Y, Du Y, Chen S, Tang H. 2011. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res. 10(4):1904-1914. doi: 10.1021/pr101140n.